ABOUT THE COURSE

The costs of offshore wind are currently, significantly higher than onshore wind. A significant contributor to this higher cost is the cost of the foundations for the turbines. Hence a rational and optimized design of foundation for wind turbines is essential to reduce the overall cost.

This course gives a detailed knowledge about the design and analysis of mono pile, and jacket structure foundations. This course also includes the soil pile interaction and the dynamic responses.

This course will provide a general overview of the aero-servo-hydro-elastic software Bladed and the different engineering models behind the code in order to represent the coupled dynamics of offshore wind systems.

Who Should Attend

Engineers and researchers involved in the design of offshore wind farm foundation, Contracts engineers, Wind turbine Installation companies, Team leaders, Conversion Engineers, Project engineers and managers, offshore controls engineers, Safety inspectors will benefit from attending this course. The course is innovative in both content & structure with a careful balance of theory & practice.

COST

The registration fee of the workshop will be £850 + VAT (UK only)

PAYMENT

Payments can be made by cheque (made payable to ASRANet Ltd.), cash or bank transfer. Please enquire for details.

COURSE MATERIAL:

The lecture notes will be sent in advance at least 1 week before the course starts.

CONTACT

ASRANet Ltd.
St Georges
Building 5 St
Vincent Place
Glasgow, G1
2DH Scotland,
UK
W www.ASRANet.co.uk/courses
E info@asranet.co.uk
T +44 (0)141 275 4801

ON-LINE COURSE
(via ZOOM) on
Foundation Design
of Offshore Wind
Turbine Structures

5-6th October
2020

Supported By:
PROGRAMME

Monday 5\(^{th}\) October 2020

09.00 - 10.30 Lecture 1: Overview of the whole Wind Turbine structure
Prof. Subhamoy Bhattacharya

10.30 - 11.00 *Break*

11.00 - 12.30 Lecture 2: Loads on the offshore wind turbine structure
Prof. Subhamoy Bhattacharya

12.30 - 13.30 *Lunch*

13.30 - 15.00 Lecture 3: Consideration for foundation design and the calculations necessary
Prof. Subhamoy Bhattacharya

Tuesday 6\(^{th}\) October 2020

09.00 - 10.30 Lecture 5: Soil Structure Interaction (Cyclic and dynamic)
Prof. Subhamoy Bhattacharya

10.30 - 11.00 *Break*

11.00 - 12.30 Lecture 6: Simplified hand calculation of case studies
Prof. Subhamoy Bhattacharya

12.30 - 13.30 *Lunch*

13.00 - 15.00 Lecture 7: Introduction to Bladed for offshore wind turbine and foundation modelling
Mr Alec Beardsell

15.00 - 15.30 *Break*

15.30 - 17.00 Lecture 8: Demonstration of offshore foundation load calculations in Bladed (ULS and FLS analysis)
Mr Alec Beardsell
CV'S OF LECTURERS:

Prof Subhamoy Bhattacharya, Chair in Geomechanics, University of Surrey

Professor Subhamoy Bhattacharya currently holds the Chair in Geomechanics at the University of Surrey where he leads the Geomechanics Research Group. He is also the Programme Director for the MSc course in "Advanced Ground Engineering/Advanced Geotechnical Engineering" and the Director of Undergraduate Studies in Civil Engineering. Previously, he held the post of Senior Lecturer at the University of Bristol, Departmental Lecturer at the University of Oxford and Academic fellowship at Tokyo Institute of Technology as well as industrial positions with Fugro Limited (UK) and Consulting Engineering Services (India) Ltd - now Jacobs. He obtained his PhD from the University of Cambridge, investigating failure mechanisms of pile-supported structures in liquefiable soils. He proposed a new theory on pile failure which received the 2005 T.K.Hseih award for the best paper in civil engineering dynamics from the Institution of Civil Engineers. His current research interest are foundations for offshore wind turbines, seismic behaviour of piles.

Some of his publications are:

Text Books

Mr Alec Beardsell, DNVGL, UK

Alec Beardsell is a Senior Loads Analysis Engineer in the Turbine Engineering Support department of DNV GL Energy. His work involves using Bladed to perform load calculations and performance assessments for wind turbine designers and manufacturers around the world. As well as contributing to the design of onshore, offshore, floating and tidal turbines, he is engaged with turbine life extension projects, and turbulence modelling. Alec also regularly provides lectures, training material and resources to support undergraduate and masters level engineering courses at a range of universities including Oxford, Bristol, Cardiff and Cranfield. Alec holds a Masters degree in Physics from the University of Oxford and is a member of the Institute of Physics. He also has an MSc (with distinction) in Renewable Energy Systems Technology from Loughborough University, where he was awarded the Professor Leon Freris prize for his thesis on Non-Linear Wind Turbine Blade Modelling. Before working in engineering, Alec enjoyed a successful career in teaching. He has a PGCE from Cambridge University and has worked in four different schools in three different countries.
Content of the Lectures:

Lecture 1: Overview of the whole Wind Turbine structure
General overview of the overall wind turbine structure/wind farm keeping in mind the concepts necessary for foundation design.

Lecture 2: Loads on the offshore wind turbine structure
This lecture will focus on the main loads on the structure from wind, wave, 1P and 3P with the aim to obtain the mudline bending moment for foundation design. Also this lecture will describe a simple frequency domain methodology to obtain the critical loads (overturning mudline moment, lateral and vertical loads) in the foundation due to the 4 types of loads. An EXCEL example will be taken to show the methodology.

Lecture 3: Consideration for foundation design and the calculations necessary
The design consideration includes the following Limit States: ULS (Ultimate Limit State), SLS (Serviceability Limit State) and FLS (Fatigue Limit State). Issues related to installation will also be discussed. This section will also discuss the calculations that needs to be carried out by the designers: (a) ultimate capacity of the foundation; (b) natural frequency of the whole system; (c) deflection and rotation of the foundation; (d) long term tilting of the foundation and change in natural frequency.

Lecture 4: Geotechnical Site Investigation and Soil behaviour under cyclic loading
This lecture will discuss the site investigation necessary and the soil testing required for obtaining the design parameters for carrying out the design. The lecture will also discuss the advanced soil testing apparatus that may be used to obtain the parameters.

Lecture 5: Soil Structure Interaction (Cyclic and dynamic)
Explain the various Soil-Structure-Interaction and simplified methods that can be to carry out soil-structure analysis will be described. The analysis are: (a) Natural frequency of wind turbine structure considering the foundation flexibility based on a mathematical model; (b) Minimum requirement of foundation stiffness (c) Prediction of rotational and tilting of the wind turbine; (d) Long term rotation prediction.

Lecture 6: Simplified hand calculation of case studies
This lecture will take an example of a wind turbine along with wind, wave and geotechnical data to carry out step by step calculations.

Lecture 7: Introduction to Bladed offshore wind turbine and foundation modelling
This lecture will provide a general overview of the aero-servo-hydro-elastic software Bladed and the different engineering models behind the code in order to represent the coupled dynamics of offshore wind systems. Special focus will be given to the offshore aspects of it, covering both the metocean environmental conditions and offshore foundation modelling. An overview of the different links with other engineering codes for offshore design will also be provided such as Sesam, Ansys Asas and Sacs.

Lecture 8: Demonstration of offshore foundation load calculations in Bladed (ULS and FLS analysis)
A practical demonstration will be shown for the typical load calculations workflow in Bladed in order to compute both ultimate and fatigue loads for offshore foundations, from turbine/foundation/soil inputs up to postprocessing the loads results.